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Usually it starts like this

Let's

< > « cluster our user profiles

e classify our documents

DB * compute some nifty
(>2TB) graph statistics

N— __~

but how?
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First step: Scalable Database!
Add a dash of

' )
o

Cassandra
m

.y nrt My
W rl a k (sharded, of course)

— But that won't scale your computations!
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https://cassandra.apache.org/
https://wiki.basho.com/
https://www.mysql.com/
https://mongodb.org/

Ok, some multi-threadding

Add _
. . ActiveMO
* Multithreading

* Actors /\
 Messaging Middleware OMQ /

::._|_r _r_;_|

But without transactions? central control?
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https://activemq.apache.org/
https://www.zeromq.org/
https://akka.io/

— e
TV K —

Result
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https://discoproject.org/
https://hadoop.apache.org/

The paper that started it all

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu * Sang Kyun Kim * Yi-An Lin *
chengtaoldstanford.edu skkim3Béstanford.edu ianl@stanford.edu

YuanYuan Yu * Gary Bradski Andrew Y. Ng *
yuanyuanédstanford.edu garybradskifigmail ang@cs.stanford.edu

Kunle Olukotun *
kunlefcs.stanford.edu

TCS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.
'Rexee Inc.

Abstract

.
We are at the beginning of the multicore era. Computers will have increasingly Neural Inforl | Iatlon
many cores (processors). but there is still no good programming framework for

these architectures, and thus no simple and unified way for machine learning to ProceSS| ng Systems
take advantage of the potential speed up. In this paper. we develop a broadly ap-
Conference, 2006

plicable parallel programming method, one that is easily applied to many different
soarmine =l onr c : hetinet o L o et 1 aohiime

« Showed how to adapt ML algorithms to MapReduce

» Locally Weighted Linear Regression, Naive Bayes, Gaussian Discriminative Analysis, k-
Means, Logistic Regression, Neural Networks, Principal Component Analysis,
Independent Component Analysis, Expectation Maximization, Support Vector Machines
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Example: k-means Clustering

Input: points X1,...Xn, number k
Output: centroids ul,...,upk

® o P Initialize k centroids pl,...,uk
random
P @
o [ ) [ ) repeat until converged
® compute all distances between

points and centroids

o map each point to closest
centroid
° ® . .
® update centroilds by computing
average of all points in
cluster
end

at
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Example: k-means Clustering

Input: points X1,...Xn, number k
Output: centroids ul,...,upk

o [ ) [ ) repeat until converged

. compute all distances between
points and centroids

o map each point to closest
centroid

® update centroids by computing
average of all points in
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Example: k-means Clustering

Input: points X1,...Xn, number k
Output: centroids ul,...,upk

Initialize k centroids pl,...,upk at
random

repeat until converged

update centroids by computing
average of all points in
cluster
end
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Example: k-means Clustering

Input: points X1,...Xn, number k
Output: centroids ul,...,upk

@ ) ® Initialize k centroids pl,...,pk at
\o ® random
? O O O repeat until converged
® compute all distances between

points and centroids

map each point to closest
centroid

end
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Example: k-means Clustering

Input: points X1,...Xn, number k
Output: centroids ul,...,upk

@ o o Initialize k centroids pl,...,upk at
' (b random
O O O repeat until converged
® compute all distances between

points and centroids

O map each point to closest
o centroid
® O
O
end
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Example: k-means Clustering

centroids
data data data
/
Map < 1]2|1|5/2(3|4]1]2[0[1|2|3 ~ 5|23]1]113|2|112|1]2|5 3[1[4[0[1[31412[1|3[1]2|5
\/ \/ \/
-
centroids centroids centroids
Reduce { \ i /
centroids
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k-means: Serial vs. Map Reduce

job k-means
map:
compute all distances to
centroid

repeat until converged

compute all distances between = === p
points and centroids

map each point to closest
map each point to closest ,//////’///" centroid

centroid
compute new cluster center

update centroids by computing
average of all points in et
average cluster centers

cluster end job
end
repeat until converged

send centroids to cluster

¥ Additional

run job k-means .
/ housekeeping
get centroids

end

And k-means clustering is one of the simplest algorithms to parallelize!
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This works: classifying documents

» Parallel predictions on millions of objects

- document classification
- profile classification
- media processing, etc.
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What about training?

* How to train your SVM/vowpal wabbit/Naive
bayes/k-nearest neighbors on 2TB of data?

* You probably don't have to.
* But if, how do you train on heaps of data”
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Large-Scale learning.

e Large-scale means a linear model.

First of all, there is no such a4 agree-»] all:1 also:1 an:1
thing as “Data Science”. '_2 b _1' ||.d'1 '”. 1
There is no scientific as:2 but:1 called:1 calling:
discipline called “data can:1 data:6 description:1
SC'_ence_’;- \tfou tczn’tdgﬁ toan discipline:1 does:1 first:1 go:1
university to study data A i A R e A it
science. On the other hand, | | hand:1 himself:1i:3 is:4 it:1
agree that there is such a match:1 my1 no:2 Of:1 on:1
thing as a data scientist. | other:1 own:1 probably:1
UUITEEET | S2S SR profile:1 science:3 scientific: 1
calling himself a data R . .
scientist, | think that my own scientist:3 see:1 someone:1
profile would probably also study:1 such:2 t:1 that:3 the:1
match that description. But there:3 thing'2 think:1 to:2
what is it a data scientist . . ’ .
does? university:1 what:1 whenever:1
would:1 you:1
Document

Features (what you'll learn on)

* Then, learn weights for each of the words to

’r predict between usually two classes.
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How to do large scale training?
 SVM-Training

1 -
mlnw§\\w\\2 +C Y (1 —y;(w-z; + b))
1=1

 Small-scale learning: Exact optimization

e Large-scale learning:

- Stochastic Gradient Descent (one example at a
time)

- Other more complex methods (bundle methods,
etc.)
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Stochastic Gradient Descent

* Do “gradient descent” on one point at a time

- Take one point
- Predict on that point
- Update weights accordingly

* Model fits into memory, essentially |O bound
 Examples: vowpal wabbit

 Even the MapReduce paper only made
“micro-batches”
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https://hunch.net/~vw/

Other scaling concepts

* Pregel: large scale graph algorithms

A

Superstep 1 Ba Ak 2 A
D S « send messages
e * read inbox

Superstep 2 > - - » change graph structure
> » vote to halt

Superstep 3 | -

» Actor based / stream processing

- Twitter's Storm
- Esper

‘ Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski, Pregel: A System for Large-Scale Graph Processing, SIGMOD'10
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https://github.com/nathanmarz/storm
https://esper.codehaus.org/

Stream Mining

» Large scale processing of event streams

* Very large domains (e.g. IP adresses, all users on Twitter)
 Thousands of events per second.

Continuous Stream of Data

4

Bounded Resource
Analyzer

for example:

« what are the most active
Stream Queries objects?

e summarize histogram of data

* range queries

lExcelIent lecture by Alex Smola:
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https://alex.smola.org/teaching/berkeley2012/streams.html

Heavy Hitters

* Count activities over large item sets (millions,
even more, e.g. IP addresses, Twitter users)

* |Interested in most active elements only.

Case 1: element already in data base

132 15
142 —» 142 12 —» 13
142 12
432 8
553 5 Case 2: new element
2z £ 713 > 023 2
023 2 v
Fixed tables of counts 713 3

Metwally, Agrawal, Abbadi, Efficient computation of Frequent and Top-k Elements in Data Streams, Internation Conference

on Database Theory, 2005
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Heavy Hitters over Time-Window

« Keep quite a big log (a
month?)

e Constant write/erase in
database

Time

« Alternative: Exponential
decay

00 04 038

0 0.5 1 1.5 2 25 3 35 4 45 5
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Hashing

 Compress large feature sets to smaller sets at
random.

 On average, you make a very small error.

-5:description,probably,profile
-3:someone,called
0O:scientist,agree,data,as,i,go,my,no

1:would,also,university,does,other,of,the

a:4 agree:1 all:1 also:1 an:1 2:hand, thing,such,that,science,on,an | -5:3
as:2 but:1 called:1 calling:1 3:is,own, all .
can:1 data:6 description:1 | 4:calling, t,it to, there, can, see -3:2
discipline:1 does:1 first:1 go:1 5:but,wheneverfirst,discipline, study 0:19
hand:1 himself:1 i:3 is:4 it:1 6:scientific,himself,what,a,match,you,think :
match:1 my:1 no:2 of:1 on:1 : 1:7
other:1 own:1 probably:1 B 2:13
profile:1 science:3 scientific:1 ’ | 3-6
scientist:3 see:1 someone:1 :
study:1 such:2 t:1 that:3 the:1 | 4:10
there:3 thing:2 think:1 to:2 55
university:1 what:1 whenever:1 )
would:1 you:1 6:10

}Neinberger, Dasgupta, Attenberg, Langford und Smola, Feature Hashing for Large Scale Multitask Learning, ICML, 2009
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Count-Min Sketches

 Summarize histograms over large feature sets
* Like hashing, but better

m bins
-
0 0 3 0 0 2 0 0
1 1 O\ 2 0 3 S 2 n different
0 5 2 1 3 7 3 hash functions
2/ 4.5 0MO 2 0 8 V

™\

Updates for new entry
Query result: 1

* Query: Take minimum over all hash functions
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Clustering with count-min Sketches

* Online clustering

- For each data point:
 Map to closest centroid (=> compute distances)
« Update centroid

— count-min sketches to represent sum over all
vectors in a class

® 9
O
o © |
o * °  ———— OOENOOI2I)IQ
O 1102035
05321373
. 4500208
o o
°© o

fggarwal, A Framework for Clustering Massive-Domain Data Streams, IEEE International Conference on Data Engineering , 2009
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BUT, what about real-time?

ONE DOES NOT SIMPLY...
B 10,

~-OGALEINTO REAL-TIME
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Scale into Real-Time?

* Putting everything in a data base and running

a query.
Do&mbouses
B _ T,
Z | B
.

 What is the maximum throughput for stream
processing? .

g"rveqm @rocesgim%
What abeut peak voluanest
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Real-Time Requirements

 \What do we need for real-time:

- Guaranteed constant processing time per event.
- Resilience against volume peaks.
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2011 in Retweets

(111} o000 000oC0

i - PP PFIFPIFIIIEIII I SN = EEaEn e
FIEIE]

o o o o |
[TITITIL “H == —,,«J \WJ _»/J L,J L,/J |—~A E 1% 17 H:'—='_:'_:H %%EFH _‘IE;_HE'F—I‘E_{ I‘ETL':IIE"HEI‘
PRERPRERRE PRI ENE PO O j 52 O oro0 oo Booo coooa
PIERIRNRE DRRERIRRNE HRRRRRERIY S M 9555 B9 e e
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+D=-B6TB

35.8musers 1.3b tweets 3.3TB
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TWIMPACT Analysis Pipeline

Analyzing dependent trends

. (links/hashtags/etc.)
JSON parsing

language prediction Day 1
sentiment analysis

Actor 1 Day 2

—_— ° Retweet -
Weets ° Matching % Snapshots :
' & Retweet Trends Trends

Actor k

Day n
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2011 in Retweets

33718

updating retweeted and mentioned user relations
. updating trend counts for all artifacts

. updating indices (full-taxt, users, all artifacts)

. removing irrelevant data from memory

5,400,880
retweets

880,808 140,800
page links

& e
k)
-
it w2000 i
- bk
STERRRRRLNN EaEh dau
i Rii 14580
§=§§§ s 3 i ’ & TWIMPACT analyses the data by
=§§ = b
& o = 1. parsing each JSON message
TR Taies SELLELLL E.SBB dp 2. extracting meta-data for users, tweets, location ...
38383 3% g 355595
5% IEIasases SELSESSELL 3. analyzing the tweet text language
Siiiee tuae i A AR 4. matching a retweet in previous tweets
338 3338e IiiTiaiias Seressiiit EEEE 5 axtraciing menti hashtans. and fnk
4 > k=l . extracu mentions users, has s a INKS
3353352 TRdRaNNN SRS SEdstele SEoEEEaEEE 490 = . - ”
2
8
9

media links

Ay
additional graphs and -~ .
indices identify relations e . every 8 hours
between users, retweets, I i \

mentions, languages and
many ather artifacts

15,008,000
user/rt relations

500,000
user relations

18082
historic snapshots
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Most retweeted tweets

1:& @wendys RT for a good cause. Each Retweet sends 50¢ to help kids in foster care. #TreatltFwd
Sk
Bk
3k
. : ; . : 15k
@mentionto #MentionTo your friend who's never be on time and lazy to do anything. 12K
Sk
Bk
3k
15k
@justinbieber life has it's ups and downs but u guys r always there 4 me. i will make my mistakes
12k : : . .
ak but i promise 2 continue 2 grow with u and try 2 do rt
Bk
3k

Jan Feb Mar Apr May Jun Jul Hug Sep 0Oct Nov Dec
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Summary

Big Data Science is not just a scaling problem.

To scale, you need to scale data & computation

Roll Your Own, or use an existing framework

Computation models might be unnatural

Large-scale learning: linear models & one example at a time

Stream mining: heavy hitters, hashing, count-min sketches

You don't scale into real-time.
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So what are the challenges?

* Non-locality of learning algorithms.

» Dealing with large amounts of writes.
 Maximum through-put of stream processing.
* Real-time.
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